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New functional forms for multiparameter equations of state have been devel-
oped for non- and weakly polar fluids and for polar fluids. The resulting func-
tional forms, which were established with an optimization algorithm which
considers data sets for different fluids simultaneously, are suitable as a basis for
equations of state for a broad variety of fluids. With regard to the achieved
accuracy, the functional forms were designed to fulfill typical demands of
advanced technical application. They are numerically very stable, and their
substance-specific coefficients can easily be fitted to restricted data sets. In this
way, a fast extension of the group of fluids for which accurate empirical equa-
tions of state are available becomes possible. This article deals with characteris-
tic features of the new class of simultaneously optimized equations of state.
Shortcomings of existing multiparameter equations of state widely used in
technical applications are briefly discussed, and demands on the new class of
equations of state are formulated. Substance specific parameters and detailed
comparisons are given in subsequent articles for the non- and weakly polar
fluids (methane, ethane, propane, isobutane, n-butane, n-pentane, n-hexane,
n-heptane, n-octane, argon, oxygen, nitrogen, ethylene, cyclohexane, and
sulfur hexafluoride) and for the polar fluids (trichlorofluoromethane (CFC-11),
dichlorodifluoromethane (CFC-12), chlorodifluoromethane (HCFC-22),
difluoromethane (HFC-32), 1,1,2-trichlorotrifluoroethane (CFC-113), 2,2-
dichloro-1,1,1-trifluoroethane (HCFC-123), pentafluoroethane (HFC-125),



1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1-trifluoroethane (HFC-143a), 1,1-
difluoroethane (HFC-152a), carbon dioxide, and ammonia) considered to date.

KEY WORDS: equation of state; extrapolation behavior; functional form;
fundamental equation; Helmholtz energy; nonpolar fluids; numerical stability;
polar fluids; simultaneous optimization; technical application.

1. INTRODUCTION

Over the course of the last two decades, the development of optimization
algorithms has significantly increased the performance of empirical multi-
parameter equations of state. New generations of reference equations of
state have become available both with a very high level of accuracy (see
Refs. 1–6) which is required for scientific standards and for selected tech-
nical applications and with a level of accuracy which is required for typical
technical standards (see, e.g., Refs. 7–12); for a comprehensive overview,
see Ref. 13. Compared to older formulations, these equations of state are
far superior with regard to the achieved accuracy, to their performance in
the critical region, to their extrapolation behavior, and to their reliability
for properties which are difficult to describe or for which no data were
available when the equation was established. However, the development of
a functional form is a time-consuming process which requires large and
reliable data sets since it is numerically very flexible. Functional forms
which are optimized on the basis of insufficient data sets may easily over-
turn the advantages of optimized equations of state. In addition, equations
of state which were optimized for a specific fluid are less suitable for the
description of different fluids, unless the fluids behave in a very similar
way. Thus, equations of state with an optimized functional form are avail-
able only for a limited number of substances, and older equations of state
without an optimized functional form are still in use in many technical
applications where accurate thermodynamic property data are required for
a broad variety of fluids.

This problem was addressed by Span et al. [14], who presented a new
kind of optimization algorithm which considers data sets for different sub-
stances simultaneously. The chosen functional form is not the one which
yields the best results for a certain fluid, but the one which yields on
average the best results for all fluids. If the considered fluids are typical
representatives of a certain group of fluids, such as the groups of nonpolar
or polar fluids, equations of state using the simultaneously optimized func-
tional form can be fitted to data sets for different fluids out of the same
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group without significant disadvantages. In this way, the advantages of
equations of state with an optimized functional form can be utilized for a
multitude of fluids, even though the available data sets would not be suffi-
cient to optimize a functional form using substance-specific algorithms in
most cases.

As a first application, we used the simultaneous optimization algo-
rithm to establish functional forms for equations of state which are able to
satisfy advanced technical demands on accuracy for typical nonpolar and
polar fluids but which are not intended as reference equations for well
measured substances. This article gives the necessary background informa-
tion on the development of this new class of equations of state. General
aspects of the project are discussed in some detail, and the resulting func-
tional forms are given. However, comparisons of the new equations of state
with experimental data and with other equations of state remain on a very
general level, and no substance-specific parameters are given here. To limit
the size of this article, more detailed information is published in subsequent
articles for the considered non- and weakly polar fluids (methane, ethane,
propane, isobutane, n-butane, n-pentane, n-hexane, n-heptane, n-octane, argon,
oxygen, nitrogen, ethylene, cyclohexane, and sulfur hexafluoride; see Ref. 15)
and for the considered polar fluids (trichlorofluoromethane (CFC-11),
dichlorodifluoromethane (CFC-12), chlorodifluoromethane (HCFC-22),
difluoromethane (HFC-32), 1,1,2-trichlorotrifluoroethane (CFC-113), 2,2-
dichloro-1,1,1-trifluoroethane (HCFC-123), pentafluoroethane (HFC-125),
1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1-trifluoroethane (HFC-143a),
1,1-difluoroethane (HFC-152a), carbon dioxide, and ammonia; see Ref. 16).
Parameter sets for further fluids will follow.

2. THE STATUS QUO AND DEMANDS ON THE NEW CLASS OF
MULTIPARAMETER EQUATIONS OF STATE

The multiparameter equations of state which are used in technical
applications for a multitude of substances today (technical equations of
state in contrast to highly accurate reference equations of state which are
usually formulated in the Helmholtz energy) still belong to the group of so
called modified BWR equations. In reduced form, this kind of pressure-
explicit formulation can be written as

p
rRT

= C
IPol

i=1
ni y ti ddi+ C

IPol+IExp

i=IPol+1
ni y ti ddi exp (− c d2) (1)

Simultaneously Optimized Functional Forms of Equations of State 3



where y is the inverse reduced temperature Tr/T, d the reduced density
r/rr, and R the gas constant.3 The functional form of these equations (the

3 More often, modified BWR equations are given in dimensional form without reducing pres-
sure, temperature, and density. The form given in Eq. (1) was chosen to underline the
similarity with the equations presented in this article. For the necessary conversions see
Ref. 13.

values of IPol, IExp, ti, and di) has not been optimized, but has been deter-
mined in a trial and error procedure. The coefficients ni are substance-
specific, and c is usually chosen in a way such that c 4 r2

r /r2
c . For technical

equations of state, the number of terms in Eq. (1) ranges from IPol+IExp=8
for the original BWR equation [17] to IPol+IExp=19 for the Bender
equation [18] with several formulations in-between. Modified BWR equa-
tions of state with more terms have been used as reference equations of
state (see, e.g., Ref. 19), but such formulations have only been established
for well measured substances.

The performance of the original BWR equation and its simple modi-
fications is hardly sufficient to satisfy current technical demands on the
accuracy of thermodynamic property data. Figure 1 shows deviations
between highly accurate experimental results for the density of carbon
dioxide and values calculated from a typical cubic equation of state, the so
called Trebble–Bishnoi–Salim (TBS) equation [23a], from an 8 term BWR
equation and a 19 term Bender equation, which were fitted to the data
set described in Ref. 16. The Bender equation describes the experimental
results within |Dr|/r [ 0.2% in general. Significantly larger deviations are
observed in the extended critical region (Tc,CO2=304.1282 K, pc,CO2=
7.3773 MPa) and at far supercritical states. The original BWR equation
yields typical deviations of the order of |Dr|/r % 1–2%, but the limit of 2%
is exceeded close to the saturated vapor line, in the extended critical region,
and at high-pressure liquid states. The TBS equation of state describes the
density of fluids with typical uncertainties of |Dr|/r % 2–5%, and the
limit of 5% is often exceeded in the extended critical region and at low
temperature and/or high pressure liquid states.

Even larger deviations can be observed for caloric properties, espe-
cially for liquid states. Figure 2 shows deviations between reliable experi-
mental results for the speed of sound in liquid n-butane and values cal-
culated from Bender, BWR, and TBS equations of state. In general, Bender
equations are able to represent derived caloric properties such as heat
capacities or speeds of sound within about 1–2%. Larger deviations are
usually observed in the extended critical region and for liquid states with
low (reduced) temperature, as can be seen in Fig. 2. The original BWR
equation and its simple modifications result in typical uncertainties of
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Fig. 1. Percentage deviations between experimental data for the density of carbon
dioxide by Duschek et al. [20], Gilgen et al. [21], Brachthäuser et al. [22], and
Klimeck et al. [23] and values calculated from refitted Bender, BWR, and TBS
equations of state.

10–20% for liquid states and liquid-like supercritical states. The uncertainty
of liquid phase speeds of sound calculated from typical cubic equations of
state exceeds 50%.

While the observed uncertainties in density may still be acceptable for
many technical applications, the uncertainties for derived caloric properties
calculated from cubic equations of state or from the BWR equation and its
simple modifications are unacceptable. Over a broad range of states,
accurate and consistent data for thermal and caloric properties can only be
calculated with rather complex modifications of the BWR equation.

However, more complex modified BWR equations also have serious
disadvantages when being fitted to data sets of less well measured
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Fig. 2. Percentage deviations between experimental data for the speed
of sound in the liquid phase of normal butane measured by Niepmann
[24] and values calculated from refitted Bender, BWR, and TBS equa-
tions of state.

substances. In the range where experimental data are available, Bender
equations yield reliable results for the properties used to fit the substance-
specific coefficients. For n-octane, this fact is illustrated in the p-r diagram
in Fig. 3. In the hatched area, where prT data were used to fit the equa-
tions, a Bender equation fitted to the data set described in Ref. 15 and the
Bender equation by Polt [25] yield similar and physically reasonable plots
of the shown isotherms. Outside the range where the equations were fitted
to data, both equations yield physically unreasonable results. For derived
caloric properties, unreasonable results can be found even within the range
where the equations were fitted to data. This fact is illustrated in the cp-T
diagram in Fig. 3.
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Fig. 3. Isotherms in a p-r diagram and isobars in a cp-Tdiagram for n-octane which were
calculated from the Bender equation published by Polt [25] and from a Bender equation
which was refitted to the data set described in Ref. 15. The Maxwell-like loops which result
from the equation by Polt at supercritical temperatures were cut to preserve the clarity of the
p-r diagram.

The reason for this misbehavior becomes obvious in Fig. 4. The coef-
ficients of complex multiparameter equations of state without an optimized
functional form are highly intercorrelated. When being fitted to the small
data sets available for higher alkanes, the equations are able to represent
the data quite well, but the resulting coefficients are somewhat random.
Such equations cannot be extrapolated to states outside the range where
they were fitted to data, and calculated values for derived properties cannot
be expected to be reasonable. The BWR equation and its simple modifica-
tions are numerically more stable, but especially with regard to an accurate
description of caloric properties they fail due to their general restrictions.

Depending on the application, technical demands on the accuracy of
thermodynamic property models can be very different. When dealing with
mixtures of complex molecules, chemical engineers are grateful for a quali-
tatively correct description of the resulting phase equilibria, while engineers
in the natural-gas business need to calculate densities of a multi-component
mixture with an uncertainty of |Dr|/r [ 0.1% up to pressures of 30 MPa.
The equations of state presented here aim at technical applications with
advanced, but not with extreme, demands on the accuracy of thermo-
dynamic properties, which involve not only thermal properties but also
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Fig. 4. Values of the coefficients of the BWR and Bender equations
which resulted from fits to the data sets of the 15 non- and weakly polar
fluids described in Ref. 15. The equations are written in reduced form, see
Eq. (1). The coefficients are plotted over the acentric factor of the corre-
sponding fluids.

derived caloric properties such as heat capacities or speeds of sound.
Typical examples are the design of compressors, accounting of measured
volume flows, or the optimization of processes with large throughput. In
general, the accuracy of Bender equations which were fitted to data sets of
well measured substances is regarded as sufficient for these kinds of appli-
cations. Problems may arise from some typical shortcomings of Bender
equations, such as a poor representation of properties in the vapor region
close to the saturation line or of liquid properties at low reduced tempera-
tures. As far as possible, the new class of formulations should avoid these
problems. Properties in the critical region should be reasonably repre-
sented, but in most cases there is no need for high accuracies in this area.
The simplicity of the formulation was regarded as more important than a
highly accurate representation of properties in the critical region. Based on
this assessment, demands on the accuracy of calculated data for typical
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Table I. Demands on the Accuracy of the New Class of Technical Equations of State

Uncertainty in
Pressure range r(p, T) w(p, T) cp(p, T) ps(T) rŒ(T)g rœ(T)g

p [ 30 MPaa 0.2%b 1–2%c 1–2%c 0.2%d 0.2% 0.4%d, e

p > 30 MPaf 0.5% 2% 2% – – –

a Larger uncertainties are to be expected in the extended critical region.
b In the extended critical region Dp/p < 0.2% is used instead of the demand given for Dr/r.
c 1% at gaseous and gas-like supercritical states, 2% at liquid and liquid-like states.
d Larger relative uncertainties can be tolerated for small vapor pressures and small saturated

vapor densities.
e Combination of the uncertainties of gas densities and vapor pressures; experimental data of

this accuracy are available for only a few substances.
f States at pressures p > 100 MPa are not considered due to their limited technical relevance.
g

Œ refers to saturated liquid states, œ to saturated vapor states.

thermal and caloric properties can be formulated; these demands are
summarized in Table I.

However, the most important demands relate to the numerical stability
of the formulations. Results for derived caloric properties such as heat
capacities need to be reliable even if the equation could only be fitted to
data for thermal properties. Fits to small data sets need to be possible to be
able to establish equations for as many fluids as possible based on existing
data sets and to reduce the experimental efforts which are necessary for an
accurate description of fluids for which no sufficiently accurate data are
available. Furthermore, it is essential that equations of state reasonably
extrapolate beyond the range where they could be fitted to experimental
data in many technical applications. This is especially true when applied to
pure component equations in Helmholtz energy based mixture models [26]
where properties may be calculated for reduced temperatures at which
one or more of the involved pure substances is not in a physically and
chemically stable fluid state at all.

3. SETTING UP EQUATIONS OF STATE FOR TECHNICAL
APPLICATIONS

Modern equations of state which are intended to describe the whole
range of fluid states of a pure substance are usually formulated in the
reduced Helmholtz energy. The reduced Helmholtz energy is split into one
part which describes the behavior of the hypothetical ideal gas (superscript o)
at given values of temperature and density and a second part which
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describes the residual behavior (superscript r) of the real fluid. Thus, the
equation of state is written in the form

a(T, r)
RT

=
ao(T, r)+a r(T, r)

RT
=ao(y, d)+a r(y, d), (2)

where a is the specific or molar Helmholtz energy, R the corresponding gas
constant, T the temperature, r the density, y=Tr/T the inverse reduced
temperature, and d=r/rr the reduced density. Since the Helmholtz energy
as a function of temperature and density is one of the variable sets which
are suitable for the formulation of so called fundamental equations, all
thermodynamic properties can be calculated by combinations of derivatives
of ao and a r with respect to y and d. Table II summarizes the corresponding
relations for some important properties.

The required relation for the ideal gas part, ao(y, d), can easily be
obtained from an integrable equation for the heat capacity of the ideal gas,
co

p(T), which is known rather accurately for many technically important
fluids. The development of equations for co

p(T) and the required integra-
tion is described in detail in Ref. 13. The work described here focuses on
the description of the residual part of the reduced Helmholtz energy,
a r(y, d).

The decisive techniques which are required to establish formulations
for a r(y, d) are ‘‘weighting of the underlying experimental data,’’ ‘‘linear
and nonlinear multiproperty fitting,’’ and ‘‘optimization of the functional
form.’’ The corresponding algorithms are basically known both with regard
to their theoretical background (see, e.g., Refs. 27–29) and with regard to
their practical application (see, e.g., Refs. 1 and 7). Those fundamentals
will not be repeated at this point; for an overview see Refs. 13 and 30.
However, compared to the completely substance-specific development of
reference equations, some differences result from the application of the
simultaneous optimization procedure by Span et al. [14] to equations of
state for technical applications. These special requirements will be discussed
in this section.

The general setup which was chosen for the new class of equations of
state reads

a r(T, r)
RT

=a r(y, d)= C
IPol+IExp

i=1
Ai(y, d)

= C
IPol

i=1
ni y ti ddi+ C

IPol+IExp

i=IPol+1
ni y ti ddi exp (− dpi). (3)
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Table II. Definitions of Common Thermodynamic Properties and Their Relation to the
Reduced Helmholtz Energy a

Property and definition Relation to a and its derivativesa

Pressure
p(T, r)=− (“a/“v)T

p
rRT

=1+da r
d

Derivatives of pressure
(“p/“r)T (“p/“r)T=RT(1+2da r

d+d2a r
dd)

(“p/“T)r (“p/“T)r=Rr(1+da r
d − dya r

dy)

Entropy
s(T, r)=− (“a/“T)v

s
R

=y(ao
y +a r

y) − ao − a r

Internal energy
u(T, r)=a+Ts

u
RT

=y(ao
y +a r

y)

Isochoric heat capacity
cv(T, r)=(“u/“T)v

cv

R
=− y2(ao

yy+a r
yy)

Enthalpy
h(T, p)=u+pv

h
RT

=1+y(ao
y +a r

y)+da r
d

Isobaric heat capacity
cp(T, p)=(“h/“T)p

cp

R
=− y2(ao

yy+a r
yy)+

(1+da r
d − dya r

dy)
2

1+2da r
d+d2a r

dd

Speed of soundb

w(T, p)=`(“p/“r)s

w2

RT
=1+2da r

d+d2a r
dd −

(1+da r
d − dya r

dy)
2

y2(ao
yy+a r

yy)

Joule–Thomson coef.
m(T, p)=(“T/“p)h

mRr=
−(dar

d+d2ar
dd+dyar

dy)
(1+dar

d −dyar
dy)

2 −y2(ao
yy+ar

yy)(1+2dar
d+d2ar

dd)

Second thermal virial coefficient
B(T)=limr Q 0(“(p/(rRT))/“r)T Brr=lim d Q 0 a r

d

Third thermal virial coefficient
C(T)=1

2 limr Q 0(“
2(p/(rRT))/“r2)T Cr2

r =lim d Q 0 a r
dd

Second acoustic virial coefficientc

ba(T)=limr Q 0(“(w2/(ko
s RT))/“r)T

ba rr=lim d Q 0
52a r

d − 2
ko

s − 1
ko

s

ya r
dy+

(ko
s − 1)2

ko
s

y2a r
yy
6

Liquid-vapor phase equilibriumd Simultaneous solution of

T −=Tœ=Ts
ps

RTs

1 1
rœ

−
1
rŒ

2− ln 1 rŒ

rœ

2=a r(ys, dŒ) − a r(ys, dœ)
p(Ts, rŒ)=p(Ts, rœ)=ps

g(Ts, rŒ)=g(Ts, rœ) dŒ(1+dŒa r
d(ys, d −))=dœ(1+dœa r

d(ys, dœ))

a a r
d=1“a r

“d
2

y

, a r
y=1“a r

“y
2

d

, a r
dd=1“

2a r

“d2
2

y

, a r
yy=1“

2a r

“y2
2

d

, a r
dy=1 “

2a r

“d “y
2 , ao

y =1“ao

“y
2

d

,

ao
yy=1“

2ao

“y2
2

d

.

b The specific gas constant R=Rm/M has to be used to calculate speeds of sound.
c ko

s =Co
p/Co

v is the isentropic expansion coefficient of the ideal gas.
d The index s indicates saturation, Œ saturated liquid states, and œ saturated vapor states.
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This form can be regarded as an advancement of the pressure-explicit
form of the older modified BWR equations, Eq. (1). It was introduced by
different groups (see, e.g., Refs. 7 and 8) in the 1980’s and is well estab-
lished for accurate empirical equations of state today.

Special terms for an improved description of properties in the critical
region such as Gaussian bell-shaped terms (see Refs. 1–6) and nonanalytic
terms (see Refs. 2 and 3) were not used in order to preserve the necessary
simplicity of a technical equation of state. Such terms are unavoidable for
highly accurate reference equations of state, but the demands which are
defined in Table I can easily be satisfied without them.

Besides the polynomial and exponential terms in Eq. (3), we con-
sidered two different types of terms as promising candidates for use in
technical equations of state. Expressions of the general form

Ai(y, d)=ni
ddi y ti

(1 − cid)2 (4)

can be interpreted as an empirical simplification of the well known hard-
sphere terms, see, e.g., Saager et al. [31]. The ci introduced by such
‘‘simplified hard-sphere terms’’ are additional parameters, which have to be
determined during the optimization process, and due to the quotient, the
required derivatives become more complicated than the derivatives of
Eq. (3). But compared to the original hard-sphere terms, the complications
involved by Eq. (4) were still regarded as acceptable since terms like these
were expected to improve the representation of properties at liquid and
liquid-like supercritical states.

Tegeler et al. [32] derived ‘‘square-well terms’’ of the form

Ai(y, d)=ni ddi (exp(ciy) − 1)mi (5)

from an expression for the second virial coefficient which results from an
integration of the square-well potential; see Mason and Spurling [33].
With ci and mi, Eq. (5) introduces two additional parameters and, compared
to simple polynomial and exponential terms, derivatives with respect to y

become more complicated. Terms of this form were tested since they were
expected to improve the representation of properties at gaseous and
gas-like supercritical states.

However, neither simplified hard-sphere terms nor square-well terms
resulted in a significant improvement of the resulting equations of state,
and thus the general set-up of the ‘‘bank of terms,’’ the pool of terms from
which the optimization algorithm selects the functional form of the actual
equation of state (see Refs. 13 and 29), was restricted to simple polynomial
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and exponential terms. The final bank of terms used in the simultaneous
optimization procedure contained a total of 583 terms and reads

a r(y, d)= C
8

i=1
C
12

j=− 8
ni, j d iy j/8+ C

5

i=1
C
24

j=− 8
ni, j d iy j/8 exp (− d)

+ C
5

i=1
C
56

j=16
ni, j d iy j/8 exp(− d2)+ C

4

i=2
C
38

j=24
ni, j d iy j/2 exp (− d3),

(6)

with y=Tr/T and d=r/rr. To make use of a simple corresponding states
similarity when using identical functional forms for a variety of substances,
the reducing parameters Tr and rr were chosen to be equal to the critical
parameters Tc and rc, or to the best estimated values available for Tc and rc

of the respective substance. Exponential expressions with density powers up
to 6 were used in preliminary banks of terms, but the optimization algo-
rithm did not select any of the corresponding terms—a restriction to terms
up to exp(−d3) seemed appropriate for simple technical equations of state.

With respect to the exponents used, Eq. (6) violates two of the
recommendations given in Ref. 34 for functional forms resulting in a
reasonable extrapolation behavior up to extreme temperatures and pres-
sures. For pure polynomial terms, the use of density powers up to 8
(Ref. 34 asks for i [ 4 for polynomial terms) leads to plots which are too
steep in the limit of very high densities and affects the extrapolation to very
high pressures. However, for technical equations of state with a restricted
number of terms, the use of polynomials with high density powers is essen-
tial for an accurate representation of liquid properties, while the represen-
tation of properties at pressures of several giga pascals (GPa) can be
regarded as arbitrary under technical aspects.

The use of negative exponents for the inversely reduced temperature y

results in virial coefficients which diverge at very high temperatures. When
the bank of terms was defined, this shortcoming was accepted since terms
with negative exponents for y are generally expected to improve the repre-
sentation of properties at low reduced temperatures. But at this point the
experience with simultaneously optimized functional forms disproved
common teachings—the final equations do not contain terms with negative
exponents for y, even though such terms were contained in the used bank
of terms. If terms with negative exponents for y had significantly improved
the resulting equations of state in the low temperature range, where
accurate data were contained in the used data sets, they would have been
selected by the optimization algorithm.

Simultaneously Optimized Functional Forms of Equations of State 13



3.1. Weighting of Experimental Data

In general, the use of weighted experimental data is recommended for
the development of empirical correlation equations. For equations of state
which are based on data for different properties, the use of weighted data
becomes mandatory since deviations in different properties cannot be
compared with each other unless they are normalized in a suitable way.
Thus, the quality criterion of a multiproperty fit which considers data for P
different properties becomes a sum of squares q2 which can be written as

q2= C
P

p=1
C
Mp

m=1

z2
p, m

s2
p, m, exp

= C
P

p=1
C
Mp

m=1

(yp, m, exp − yp, m, calc)2

s2
p, m, exp

. (7)

In Eq. (7), yp corresponds to the pth property or to a reduced form of
the property and zp to the corresponding residuum. Mp is the number of
data used for the pth property and s2

p, m, exp is the variance which results
from the experimental uncertainty of yp, m, exp. According to the law of error
propagation, the variance s2

p, m, exp usually considers contributions from all
measured quantities to assess the total uncertainty of a data point. For
details see Ref. 13.

Compared to the development of reference equations of state which
are expected to represent all data within their experimental uncertainty, an
important difference results from the requirements formulated for the new
class of technical equations of state in Section 2. When developing techni-
cal equations of state, highly accurate data are overemphasized if they are
weighted with their experimental uncertainty. A prT data point m with
sr, m, exp/rm % 0.02% would contribute z2

m/sr, m, exp % 100 to the sum of
squares for the corresponding substance when being represented just within
the limit of |Dr|/r=0.2%. At higher temperatures for example, a less
accurate data point j with sr, j, exp/rj % 0.1% would contribute only
z2

j /sr, j, exp % 4 to the sum of squares when being represented also within
|Dr|/r=0.2%. As a consequence, regions where highly accurate data are
available would be overfitted while regions with worse, but sufficiently
accurate data, would not be considered appropriately. To avoid this
problem, experimental data had to be weighted with the demanded uncer-
tainties summarized in Table I. Isochoric heat capacities, heat capacities at
saturation and isobaric enthalpy differences were treated like isobaric heat
capacities. Larger uncertainties were accepted for caloric properties in
the critical region. Data for the Joule–Thomson coefficient and for non-
isobaric enthalpy changes had to be assessed on an individual basis. Selected
data for the second virial coefficient were used with sB 4 0.02 · B(T) for
substances for which the data situation in the gas phase is poor. Data for
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the second virial coefficient were not considered for most substances with a
well measured gas phase.

In this way, the contribution to the sum of squares becomes 1 for data
which are represented just within the demanded accuracy. The weighted
variance of a fit,

s2
wt={q2/(M − I)} 5 {q2/M} (8)

with M the number of data points used and I the number of adjustable
coefficients, becomes a measure for the fulfillment of the demands on
accuracy. Only data with experimental uncertainties exceeding the
requested uncertainty of the equation have to be weighted with their
experimental uncertainty, if no more reliable data are available in the
respective region.

Besides the individual weights for each data point, the application of
the simultaneous optimization algorithm by Span et al. [14] requires a
substance-specific reference sum of squares, q2

o, j, for each of the J con-
sidered substances to build the quality criterion of the simultaneous
optimization,

Xg2= C
J

j=1
qg2

j = C
J

j=1

q2
j

q2
o, j

. (9)

The reference sums of squares were determined by fitting nine-term
equations of state which were established for each of the considered sub-
stances using a substance-specific optimization algorithm (see Ref. 29). The
only criterion which was considered during the optimization of the equa-
tions was the achieved sum of squares. For substances with restricted data
sets, these equations show all kinds of shortcomings which are expected for
functional forms optimized on the basis of insufficient data sets. However,
since they were needed only as a measure for the sums of squares which can
be achieved by substance-specific optimization, the shortcomings of the
nine-term equations do not affect the simultaneous optimization procedure
in any way.

3.2. Critical Parameters

Reference equations of state are usually constrained to preselected
values of the critical parameters Tc, rc, and pc in order to guarantee an
exact representation of the critical point, to improve the representation of
properties in the critical region, and to enable a reasonable application of
special critical region terms which introduce differences T − Tc and r − rc as
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variables. However, it was decided not to constrain the new class of
technical equations of state to preselected critical points for two reasons.

Preliminary equations which were constrained to preselected critical
points needed 1 to 2 additional terms to fulfill the requirements outside the
extended critical region. Since an exact representation of critical parameters
is usually not important for technical applications, this additional numerical
expense was regarded as not justified.

In general, accurate data for critical properties are available only for
rather well measured substances. When setting up equations of state for
technically important substances with restricted data sets, one often has to
rely either on questionable experimental results for the critical properties
or on predicted values. To estimate uncertainties of predicted critical
properties for fluids in the class of equations of state presented here,
26 algorithms for the determination of critical parameters of n-alkanes,
12 algorithms for isomers of alkanes, 17 algorithms for alcohols, and
13 algorithms for other organic substances were tested. In general, algo-
rithms based on group contribution methods were considered; for
n-alkanes and alcohols, simple methods based on the number of carbon
atoms or on the molar mass were considered as well. For the 18 n-alkanes
from methane to octadecane, 15 isomers with 4 to 8 carbon atoms, 20
alcohols ranging from methanol to decanol, and 22 organic substances
belonging to the groups of cyclo-alkanes, of aromatic substances, and of
unsaturated hydrocarbons, deviations between experimental and predicted
results for the critical parameters were investigated. The results are sum-
marized in Table III for each of the groups for the algorithms which led to
the smallest deviations. If the normal boiling temperature and the saturated
liquid density at this state are accepted as additional parameters, the algo-
rithm proposed by Vetere [38] yields slightly better results in many cases.
However, based on these results, it became obvious that none of the algo-
rithms is able to predict critical parameters with the accuracy that is
required to represent, e.g., prT data in the extended critical region within
|Dp|/p [ 0.2%; see Table I. The representation of properties in the homo-
geneous region could even be distorted if an equation of state is con-
strained to uncertain critical parameters.

For substances for which no reliable data are available in the critical
region or at supercritical states, estimates for the critical temperature are
usually the most accurate information on the location of the critical point.
To make use of this information, estimated values for one saturated vapor
(rœ % 0.9rc, est) and one saturated liquid density (rŒ % 1.1rc, est) close to the
critical point (T % 0.9998Tc, est) can be introduced into the corresponding
data set with very low weights (srŒ, rœ/r % 0.1). In this way, the equation of
state will yield reasonable critical parameters, which are consistent with the

16 Span and Wagner



Table III. Average and Maximum Deviations Between Experimentally Determined and
Predicted Values for Critical Parameters

Group of Average deviations (RMSa) Maximum deviations
substances Reference Tc (%) pc (%) rc (%) Tc (%) pc (%) rc (%)

n-Alkanes Teja et al. [35]b 0.07 0.72 0.50 0.15 −2.15 −1.20
Riedel [36]c 0.23 3.01 7.04d 0.24 −3.67 −10.4d

Isomers Riedel [36]c 0.24 2.00 1.36 0.73 −3.42 −2.64
Alcohols Teja et al. [35]b 0.09 0.39 1.36 −0.16 −0.79 2.84

Somayajulu [37]c 1.06 2.96 2.78 −4.45 6.54 −6.59
Others Somayajulu [37]c 0.30 1.59 2.42 0.74 −3.14 7.09

a Root-mean-square deviation, RMS — [; (100(ycalc − yexp)/yexp)2/M2]0.5.
b Based on the number of carbon atoms in a molecule.
c Based on a group contribution method.
d Large deviations due to more recent findings regarding the critical density of higher alkanes.

experimental information available for saturated and homogeneous states.
However, for fluids with uncertain critical parameters, experimental data in
the extended critical region are generally scarce and the functional forms
presented here were not designed for an accurate prediction of properties in
the critical region. Thus, the critical parameters of the equation should not
be used as the best approximation for the ‘‘true’’ critical parameters. The
influence of uncertain critical parameters on the accuracy of the equation
of state outside of the critical region will be discussed in Section 3.3.2.

For the considered fluids, the resulting equations yield critical tem-
peratures which generally agree with the ‘‘true values’’ of Tc within a few
tenths of a kelvin. The deviations with respect to the critical pressure and
density remain within the limits which can be deduced from the deviation
in Tc and from the demands on the accuracy of properties in the homoge-
neous region. Details on the resulting critical parameters are given in sub-
sequent articles [15, 16] together with further substance-specific information.

3.3. Accuracy Versus Numerical Stability

Based on the foundations explained above and on carefully weighted
data sets for 15 non- and weakly polar fluids and for 13 typical polar
fluids,4 the simultaneous optimization algorithm was used to establish

4 For homogeneous states, the final data sets contain almost 55,000 experimental data points,
which were selected out of a total of more than 100,000 data points. For details see
Refs. 15 and 16.

functional forms for technical equations of state for non- and weakly polar
fluids and for typical polar fluids. It was found that equations of state
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based on simultaneously optimized functional forms with 10 terms are
generally able to satisfy the demands summarized in Table I. These equa-
tions resulted in weighted variances below one for all considered fluids
except for the associating fluid ammonia, and on average they are superior
to the results of refitted Bender equations of state [18] with 19 terms.
However, in certain regions, the 10-term equations fail to strictly fulfill the
formulated demands. Caloric properties and especially speeds of sound for
liquid states at low reduced temperatures are frequently represented with
relative deviations significantly larger than ± 2%. With regard to the
representation of thermal properties, shortcomings are found for high
density gaseous states and at supercritical states especially for equations
based on the functional form for polar fluids. Functional forms with 11
terms do not result in significant improvements. Functional forms with 12
terms are needed to strictly fulfill the formulated demands except for very
few points where enlarged deviations are observed for different reasons;
these exceptions will be discussed in subsequent articles [15, 16] in detail.

Typical examples of the shortcomings of equations of state based on
simultaneously optimized functional forms with 10 terms and for the
superiority of those based on functional forms with 12 terms are shown in
Figs. 5 and 6. Figure 5 shows the representation of accurate speed of sound

Fig. 5. Percentage deviations between experimental data for the speed of sound in the liquid
phase of normal butane measured by Niepmann [24] and values calculated from simulta-
neously optimized equations of state with 10 and 12 terms.
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Fig. 6. Percentage deviations between experimental results for the
density of R134a by Tillner-Roth and Baehr [39, 40], Dressner and
Bier [41] and Klomfar et al. [42] and values calculated from simulta-
neously optimized equations of state with 10 and 12 terms.

data in the liquid phase of n-butane; see Fig. 2 for comparison. At tem-
peratures above 220 K (T/Tc % 0.52), the equation of state which is based
on the functional form for non- and weakly polar fluids with 10 terms is
able to represent the speed of sound data by Niepmann [24] within
|Dw|/w [ 2%. However, at lower temperatures, the observed deviations
clearly exceed this limit. The equation based on the functional form for non-
and weakly polar fluids with 12 terms represents all of the data within the

demanded accuracy.
Figure 6 shows deviations between selected experimental data for the

density of 1,1,1,2-tetrafluoroethane (HFC-134a) and values calculated from
equations of state based on simultaneously optimized functional forms for
polar fluids with 10 and 12 terms. The equation with 12 terms represents
most of the data within |Dr|/r [ 0.2%. Those data which exceed this limit
represent states in the extended critical region; the corresponding devia-
tions in pressure remain within |Dp|/p [ 0.2%. The equation with 10 terms
represents most data within |Dr|/r [ 0.2% as well, but it cannot strictly
satisfy the formulated demands on accuracy. In this example, enlarged
deviations are observed for supercritical states over the whole range of
investigated pressures.
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Based strictly on the demands formulated in Table I, one has to
conclude that simultaneously optimized functional forms with 12 terms
form the ideal basis for the new class of technical equations of state.
However, simultaneously optimized equations with only 10 terms are
numerically more stable than those with 12 terms. This fact is illustrated in
Fig. 7, which shows the plots of the coefficients resulting from independent
fits to data sets for 15 non- and weakly polar fluids over the acentric factor;
see Fig. 4 for comparison. The coefficients of the equations using the
simultaneously optimized functional form with 10 terms are small, and the
values of the coefficients are smooth functions of the acentric factor of the
fluid. Significant oscillations are not observed. The plots which result from
the functional form with 12 terms still indicate higher numerical stability
than those found for the BWR equation with only 8 terms and far inferior
accuracy. In general the values of the coefficients do not change rapidly
from substance to substance. However, the observed oscillations and inter-
correlations are clearly more pronounced than for the equation with 10 terms.

Fig. 7. Values of the coefficients of equations of state based on simultaneously optimized
functional forms with 10 and 12 terms. The coefficients resulted from fits to the data sets of 15
non- and weakly polar fluids described in Ref. 15. The coefficients are plotted over the acen-
tric factor of the corresponding fluids.
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The major objective of this project was to establish functional forms
for sufficiently accurate equations of state for typical nonpolar and polar
fluids which can be transferred easily to technically important substances
with small data sets. Bearing in mind this fact and the results shown in
Fig. 7, it had to be clarified whether the obvious advantages of equations
with 12 terms do not turn into disadvantages in practice when being fitted
to small data sets.

3.3.1. Investigation of Numerical Stability

The numerical stability of a functional form can be tested systemati-
cally by comparisons with well defined data sets calculated from highly
accurate reference equations or by an investigation of equations of state
which were fitted to subaverage data sets. The second approach is infor-
mative especially if additional data become available in regions which were
not covered by data when the corresponding equation was fitted.

For a systematic investigation of numerical stability, values for the
density, the isobaric heat capacity and the speed of sound of methane were
calculated from the highly accurate reference equation by Setzmann and
Wagner [1] at 511 points. The established data set covers temperatures
from 95 to 450 K (Tt=90.6941 K and Tc=190.564 K) and pressures up to
100 MPa at reasonable intervals, including gaseous, liquid, critical, and
supercritical states. Additionally, data for the vapor pressure and the satu-
rated vapor and liquid density were calculated at 20 temperatures.

In a first step, equations of state with simultaneously optimized func-
tional forms with 10 and 12 terms were fitted to the complete data set,
considering data of all properties. For homogeneous states, Fig. 8 reports
the resulting percentage absolute average deviations

AAD — C
M

m=1
(100 |Dym |/ym)/M (10)

under the heading ‘‘complete data set.’’ To make the comparison more
expressive, six regions are defined in Fig. 8: gas, liquid, (extended) critical
region, and supercritical fluid with low densities (LD, r [ 0.6rc), medium
densities (MD, 0.6rc < r < 1.5rc), and high densities (HD, r \ 1.5rc). In
the extended critical region, pressure deviations are used instead of density
deviations. As was to be expected, both equations yield average absolute
deviations which are smaller than the demanded uncertainties when being
fitted to the complete data sets. The equation with 12 terms is superior to
the equation with 10 terms in all regions and for all properties.

In a second step, both equations were fitted to a reduced data set
which consisted of 21 prT data in the range 100 K [ T [ 300 K and
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Fig. 8. Average absolute deviations between densities,
isobaric heat capacities, and speeds of sound calculated
from simultaneously optimized equations with 10 and
12 terms and from the reference equation by Setzmann
and Wagner [1]. See the text for an explanation of the
different supercritical regions. In the critical region,
pressure deviations are used instead of density devia-
tions.

p [ 95 MPa, 4 vapor pressures and 4 saturated liquid densities in the range
100 K [ T [ 185 K and 2 saturated vapor densities at temperatures of 160
and 185 K. To imitate a small but accurate set of experimental data, a
normally distributed scatter with a standard deviation of sy=0.02% was
added to the calculated values. Under the heading ‘‘reduced data set,’’
Fig. 8 summarizes the results of comparisons between the data which were not
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used in the fit and values predicted from the simultaneously optimized
equations of state. For the 12-term equation which was fitted to such an
extremely small data set consisting only of 31 data for thermal properties,
the observed average absolute deviations exceed the demanded uncertain-
ties only slightly in a single region, namely for the representation of prT
data at supercritical states with medium densities. The advantages of the
equation with 12 terms are less pronounced than before, but still the longer
equation yields better results. When being fitted to such small data sets,
multiparameter equations of state without an optimized functional form
yield unphysical results especially for derived caloric properties.

Systematic investigations like the one described above prove the
superior numerical stability of equations of state with a simultaneously
optimized functional form. There were no obvious indications of disad-
vantages of functional forms with 12 terms.

When setting up the new class of technical equations for nonpolar and
polar fluids, simultaneously optimized functional forms had to be fitted to
very restricted data sets especially for the higher alkanes. For n-heptane
and n-octane, reliable data were available only for liquid states; see the
discussion in Ref. 15. For the representation of properties in the gas phase
and at supercritical states, we could rely only on some questionable data
for the second virial coefficient and on the numerical stability of the used
functional forms. As a very sensitive test for the extrapolation behavior of
the resulting equations, Fig. 9 shows plots of the ideal curves of n-octane
calculated from simultaneously optimized equations of state with 10 and 12
terms and from a Bender equation; for details on the definition of these
curves see Refs. 13 and 34. The equations with simultaneously optimized
functional forms show qualitatively correct plots with only slight oscilla-
tions even for the outermost curve, the Joule inversion curve. This result
agrees with very reasonable plots found for thermal properties as well as
for derived caloric properties—the ‘‘theoretically expected’’ plots in Fig. 3
were calculated from the simultaneously optimized equation with 12 terms.
Similar results can be found for other polar and nonpolar substances as
well. Figure 10 shows Joule–Thomson and Joule inversion curves cal-
culated from simultaneously optimized equations of state with 12 terms for
methane, propane, n-pentane, and n-heptane. Slight deformations become
obvious only for n-heptane. Although the corresponding equation is based
almost exclusively on liquid data, it still predicts a qualitatively correct plot
even of the Joule inversion curve. For an assessment of the performance of
simultaneously optimized equations, one has to be aware that only very
few reference equations for substances with extensive data sets have so far
been able to predict Joule inversion curves at least qualitatively correctly;
see Ref. 34.
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Experimental investigations of the isochoric heat capacity at gaseous,
liquid, critical, and supercritical states by Abdulagatov [43] became avail-
able both for n-heptane and n-octane after the work on the corresponding
equations had been finished. For gaseous, critical, and supercritical states,
the representation of these data can be regarded as purely predictive, since
data had not been available in these regions either for thermal or for
caloric properties. At liquid states, data for thermal and caloric properties,
but not for the isochoric heat capacity, had been previously available.
Figure 11 shows the representation of data on isochores with gas-like,
almost critical, and liquid-like densities. In the extended critical region, the
deviations between experimental data and predicted heat capacities exceed
|Dcn |/cn=5%; this result was expected since simple technical equations
cannot follow the steep increase of the isochoric heat capacity in this
region. However, outside the extended critical region, the heat capacities
are generally predicted within |Dcn |/cn=2% and thus within the uncer-
tainty claimed for this property.

The numerical stability of equations of state which use simultaneously
optimized functional forms with 12 terms is obviously sufficient for the
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Fig. 10. Joule–Thomson and Joule inversion curves of methane,
propane, n-pentane, and n-heptane calculated from simultaneously
optimized equations of state with 12 terms. The plotted phase
boundaries correspond to those of methane.

applications they were developed for. Functional forms with 10 terms are
numerically more stable, but they yield worse results for the considered
thermodynamic properties even when fitted to restricted data sets.

3.3.2. The Influence of Uncertain Critical Parameters

For reasons which were discussed in Section 3.2, the new equations for
technical applications were not constrained to certain critical parameters
and thus the influence of uncertain values for Tc, pc, and rc is reduced
drastically. However, values for Tc and rc are still needed as reducing
parameters in Eq. (6) and in the resulting equations of state.

When using only simple polynomial and exponential terms, faulty
values for Tc do not result in changes regarding the representation of
thermodynamic properties. If y is reduced with a critical temperature Tg

c

instead of the ‘‘true’’ critical temperature Tc, the coefficients of the equation
become

ng
i =ni

1 Tc

Tg
c

2 ti

(11)
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66 − 74 kg⋅m−3 (≈ 0.3 ρc) 235 − 250 kg⋅m−3 (≈ ρc) 366 − 388 kg⋅m−3 (≈ 1.6 ρc)

62 − 66 kg⋅m−3 (≈ 0.3 ρc) 222 − 234 kg⋅m−3 (≈ ρc) 435 − 455 kg⋅m−3 (≈ 1.9 ρc)
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Fig. 11. Percentage deviations 100(cn, calc–cn, exp)/cn, expbetween experimental data
for the isochoric heat capacity of n-heptane and n-octane by Abdulagatov [43] and
values predicted by the corresponding simultaneously optimized equations of state
with 12 terms.

and calculations are not affected at all. Due to the set-up of the exponential
functions in Eq. (6), this does not hold for faulty critical densities rg

c , but
most of the influence can still be compensated for by changing the coeffi-
cients.

In Section 3.2 it was shown that uncertainties of 3% are typical for
critical densities of substances for which no accurate experimental results
are available for the critical properties. Errors up to ± 10% may be
encountered in some cases. To assess the effect of such uncertainties,
simultaneously optimized equations of state with 10 and 12 terms have
been fitted to the complete data set for propane, where the density has been
reduced with rr=0.9 · rc, rr=0.97 · rc, rr=rc, rr=1.03 · rc, and rr=
1.1 · rc. The results of this test are summarized in Fig. 12 for the functional
form with 12 terms. The indicated regions correspond to those defined in
Section 3.3.1.

The best results were found for rr=rc, the case which was assumed
when optimizing the functional form. However, changes of |Drr |/rc=3%
had hardly any effect on the accuracy of the resulting equations. The
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Fig. 12. Percentage average absolute deviations resulting from fits to
propane data for simultaneously optimized equations of state with 12
terms and different reducing densities.

observed average deviations are still far smaller than the demanded uncer-
tainties. Changes of |Drr |/rc=10% resulted in significantly worse equa-
tions of state. The average deviations are still smaller than the demanded
uncertainties, except for prT data in the gas phase for rr=1.1rc and at
supercritical states with medium densities for rr=0.9rc, but the maximum
deviations exceeded the demanded uncertainties in other regions as well.

However, an uncertainty of 10% in the critical density generally only
occurs for uncommon substances with very restricted data sets. In this
sense, the results summarized in Fig. 12 prove that typical uncertainties of
critical parameters are no threat for technical equations of state based on
simultaneously optimized functional forms. Simultaneously optimized
equations with 10 terms are slightly more sensitive to changes in rr; thus,
the uncertainty of critical parameters does not go against functional forms
with 12 terms in any way.
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4. THE FINAL FUNCTIONAL FORMS

Based on the results described in Section 3.3, functional forms with a
total of 12 polynomial and exponential terms were established as a basis
for technical equations of state for the group of non- and weakly polar
fluids and for the group of typical polar fluids. In this section, the final
functional forms are given together with some global assessments of their
quality. Substance-specific details on the new class of technical equations of
state are given in subsequent articles for non- and weakly polar fluids [15]
and for typical polar fluids [16].

4.1. Results for Non- and Weakly Polar Fluids

Data sets for a total of 15 non- and weakly polar substances were
considered when working on a simultaneously optimized functional form
for these fluids. The critical temperatures of the fluids considered in com-
parisons and in the optimization procedure covered the range from
Tc=126.192 K for nitrogen and Tc=150.791 K for argon, respectively, to
Tc=569.32 K for n-octane. The acentric factors cover the range from
w % − 0.002 for argon to w % 0.391 for n-octane. At low reduced tempera-
tures, experimental data were considered down to the triple point of
propane at Tt/Tc % 0.231. At high reduced temperatures, data were con-
sidered up to the limits which result from the experimental data which are
available for argon (Tmax/Tc % 3.45) and nitrogen (Tmax/Tc % 8.51). Data at
pressures above pmax % 100 MPa were not considered due to the limited
technical relevance of extremely high pressures.

Based on selected data sets for methane, ethane, propane, n-butane,
n-hexane, n-heptane, n-octane, argon, oxygen, ethylene, isobutane, cyclo-
hexane, and sulfur hexafluoride and on the bank of terms given as Eq. (6),
the simultaneous optimization algorithm resulted in the following func-
tional form for technical equations of state for non- or weakly polar fluids:

a(y, d)=ao(y, d)+a r(y, d)

=ao(y, d)+n1 dy0.250 +n2 dy1.125 +n3 dy1.500

+n4 d2y1.375 +n5 d3y0.250 +n6 d7y0.875

+n7 d2y0.625e − d +n8 d5y1.750e − d +n9 dy3.625e − d
2

+n10 d4y3.625e − d
2
+n11 d3y14.5e − d

3
+n12 d4y12.0e − d

3
, (12)

with the reduced Helmholtz energy a=a/(RT), the temperature T, the gas
constant R, the inverse reduced temperature y=Tc/T, and the reduced
density d=r/rc. The substance-specific parameters Tc, rc, R, and ni which
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are needed to evaluate Eq. (12) and the sources of the correlations used for
the ideal gas contribution, ao(y, d), are given in Ref. 15. The derivatives of
Eq. (12) which are needed to calculate common thermodynamic properties
are summarized in Table IV. The data sets for n-pentane and nitrogen were
used to test the applicability of Eq. (12) to other non- or weakly-polar
fluids—no significant disadvantages were found for the representation of
the data which are available for these substances, even though the data set
for nitrogen covers a broader range of reduced temperatures than all data
sets used in the simultaneous optimization procedure.

Table IV. Derivatives of Eqs. (12) and (13) for the Residual Part of the Helmholtz Energy
with Respect to y and d

Derivative, abbreviation, and formulation in y and d

a r= C
IPol

i=1
nid

diy ti+ C
IPol+IExp

i=IPol+1
nid

diy ti exp(− dpi)

1“a r

“d
2

y

=a r
d= C

IPol

i=1
nidid

di − 1y ti+ C
IPol+IExp

i=IPol+1
nid

di − 1(di − pid
pi) y ti exp(− dpi)

1“
2a r

“d2
2

y

=a r
dd= C

IPol

i=1
nidi(di − 1) ddi − 2y ti

+ C
IPol+IExp

i=IPol+1
nid

di − 2((di − pid
pi)(di − 1 − pid

pi) − p2
i dpi) y ti exp(− dpi)

1“a r

“y
2

d

=a r
y= C

IPol

i=1
nitid

diy ti − 1+ C
IPol+IExp

i=IPol+1
nitid

diy ti − 1 exp(− dpi)

1“
2a r

“y2
2

d

=a r
yy= C

IPol

i=1
niti(ti − 1) ddiy ti − 2+ C

IPol+IExp

i=IPol+1
niti(ti − 1) ddiy ti − 2 exp(− dpi)

1 “
2a r

“d “y
2=a r

dy= C
IPol

i=1
niditid

di − 1y ti − 1+ C
IPol+IExp

i=IPol+1
nitid

di − 1(di − pid
pi) y ti − 1 exp(− dpi)

1 “
3a r

“d “y2
2=a r

dyy= C
IPol

i=1
niditi(ti − 1) ddi − 1y ti − 2

+ C
IPol+IExp

i=IPol+1
niti(ti − 1) ddi − 1(di − pid

pi) y ti − 2 exp(− dpi)

IPol=6 and IExp=6 for Eq. (12), IPol=5 and IExp=7 for Eq. (13)
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Results of this formulation were already discussed in the preceding
sections, where Eq. (12) was referred to as the ‘‘simultaneously optimized
equation of state with 12 terms’’ where nonpolar fluids were discussed. The
numerical stability of Eq. (12) and the extrapolation behavior of equations
of state based on Eq. (12) were analyzed in Section 3.3. The representation
of speeds of sound at liquid states was shown in Fig. 5. Plots of ideal
curves were presented in Figs. 9 and 10. The accuracy of predicted
isochoric heat capacities was shown in Fig. 11. As a very global quality
criterion, Fig. 13 shows weighted variances which resulted from fits of
Eq. (12) to the considered data sets and from refitted Bender [18] equa-
tions of state. Since the data sets were weighted with the demanded uncer-
tainties summarized in Table I, the weighted variances are a direct measure
for the fulfillment of the formulated demands. In general, weighted vari-
ances s2

wt < 0.3 indicate completely satisfactory results. The new equations
of state describe the selected data sets with weighted variances s2

wt < 0.3
with only two exceptions, isobutane (s2

wt=0.34) and SF6 (s2
wt=0.38),

which will be discussed in Ref. 15. On average, the weighted variance which
results from fitting Eq. (12) to data sets for non- or weakly polar sub-
stances is less than half the size of the weighted variance which results from
refitted Bender equations with 19 terms.
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Fig. 13. Weighted variances resulting from fits of equations of
state based on the simultaneously optimized functional form for
non- and weakly polar fluids, Eq. (12), and of Bender equations
[18] to data sets of 15 non- and weakly polar fluids. The data
sets for nitrogen and n-pentane were not used in the simulta-
neous optimization.
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4.2. Results for Typical Polar Fluids

Data sets for a total of 13 polar substances were considered when
working on a simultaneously optimized functional form for these fluids.
The critical temperatures of the fluids considered in comparisons and in the
optimization procedure covered the range from Tc=282.35 K for ethylene
to Tc=456.82 K for 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) and
Tc=487.12 K for 1,1,2-trichlorotrifluoroethane (CFC-113), respectively. The
acentric factors covered the range from w % 0.087 for ethylene to w %

0.327 for 1,1,1,2-tetrafluoroethane (HFC-134a). The dipole moments of the
fluids cover the range from m=0 for carbon dioxide, which is still con-
sidered polar due to a qudrupole moment of Q=1.5 · 10 − 39 C · m2, to
m=7.74 · 10 − 30 C · m for 1,1,1-trifluoroethane (HFC-143a). At low reduced
temperatures, experimental data were considered down to the triple point
of dichlorodifluoromethane (CFC-12) at Tt/Tc % 0.301. At high reduced
temperatures, data were considered up to the limits which result from the
experimental data available for carbon dioxide (Tmax/Tc % 3.38), ammonia
(Tmax/Tc % 1.42), and chlorodifluoromethane (HCFC-22, Tmax/Tc % 1.42).
Data at pressures above pmax % 100 MPa were not considered.

Based on the selected data sets for the halogenated hydrocarbons
dichlorodifluoromethane (CFC-12), chlorodifluoromethane (HCFC-22),
difluoromethane (HFC-32), 2,2-dichloro-1,1,1-trifluoroethane (HCFC-
123), pentafluoroethane (HFC-125), 1,1,1,2-tetrafluoroethane (HFC-134a),
1,1,1-trifluoroethane (HFC-143a), and 1,1-difluoroethane (HFC-152a) and
on data sets for ethylene, carbon dioxide, and ammonia, the simultaneous
optimization algorithm resulted in the following functional form for tech-
nical equations of state for typical polar fluids:

a(y, d)=ao(y, d)+a r(y, d)

=ao(y, d)+n1 dy0.250 +n2 dy1.250 +n3 dy1.500

+n4 d3y0.250 +n5 d7y0.875 +n6 dy2.375e − d

+n7 d2y2.000e − d+n8 d5y2.125e − d +n9 dy3.500e − d
2

+n10 dy6.50e − d
2
+n11 d4y4.75e − d

2
+n12 d2y12.5e − d

3
, (13)

with the reduced Helmholtz energy a=a/(RT), the temperature T, the gas
constant R, the inversely reduced temperature y=Tc/T, and the reduced
density d=r/rc. The substance-specific parameters Tc, rc, R, and ni which
are needed to evaluate Eq. (13) and the sources of the correlations used for
the ideal gas contribution, ao(y, d), are given in Ref. 16. The derivatives of
Eq. (13) which are needed to calculate common thermodynamic properties
are summarized in Table IV. The data sets for trichlorofluoromethane
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(CFC-11) and 1,1,2-trichlorotrifluoroethane (CFC-113) were used to test
the applicability of Eq. (13) to polar fluids, which were not considered in
the simultaneous optimization procedure—again, no significant disadvan-
tages were found for these substances. For ethylene, the equation of state
which uses the simultaneously optimized functional form for non- and
weakly polar fluids, Eq. (12), yields slightly better results and thus no sub-
stance-specific parameters for ethylene are presented in Ref. 16.

Results of an equation of state for 1,1,1,2-tetrafluoroethane
(HFC-134a) which is based on the new functional form for polar fluids,
Eq. (13), were already shown in Fig. 6. As a very global quality criterion,
Fig. 14 shows weighted variances which resulted from fits of Eq. (13) to
the considered data sets and from refitted Bender [18] equations of state.
In general, the new equations of state describe the available data sets
with weighted variances s2

wt < 0.3. The only exceptions, dichlorodifluoro-
methane (CFC-12, s2

wt=0.35), carbon dioxide (s2
wt=0.36), and ammonia

(s2
wt=0.43), will be discussed in more detail below and in Ref. 16. On

average, the weighted variance which results from fitting Eq. (13) to data
sets for polar substances is less than a quarter of the size of the weighted
variance which results from refitted Bender equations with 19 terms. To
demonstrate the superior extrapolation behavior of the new functional
form, Fig. 15 shows ideal curves for 1,1,2-trichlorotrifluoroethane (CFC-
113) calculated from the new equation of state and from a refitted Bender
equation of state; among the considered polar fluids the data set for 1,1,2-
trichlorotrifluoroethane is the most restricted one.
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Two limitations have to be considered when setting up equations of
state based on the new functional form for polar fluids, Eq. (13). Since
most of the considered polar substances are organic compounds for which
dissociation becomes relevant at rather low reduced temperatures, the data
sets used to develop Eq. (13) were restricted in the limit of high reduced
temperatures. For carbon dioxide, data were available up to Tmax/Tc % 3.38
but no data were available at T/Tc>1.42 for any of the other substances.
Based only on data for carbon dioxide, it was therefore not possible to
describe the range of high reduced temperatures as accurately as for non-
and weakly polar fluids. For carbon dioxide, enlarged uncertainties are
observed at temperatures above T/Tc % 1.5 (for details see Ref. 16), even
though the high temperature range is qualitatively correctly described by
equations of state based on the new functional form; see Fig. 15. Any
attempt to improve the representation of carbon dioxide data at high tem-
peratures affected the representation of the data sets for other fluids. Thus
it was accepted that increased uncertainties are to be expected when using
equations of state based on Eq. (13) at high reduced temperatures.
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Weakly associating fluids can be described rather well with equations
of state based on the new functional form for polar fluids. Even the equa-
tion of state for ammonia satisfies the demands formulated in Table I with
just a few exceptions; see Ref. 16. However, strongly associating fluids
cannot be described with the demanded accuracy; a corresponding attempt
for water failed. Thus, when dealing with associating fluids, functional
forms according to Eq. (13) should be used with special care. An applica-
tion of the new concept to strongly associating fluids is one of the tasks
which is still pending. Whether associating fluids can simply be treated as a
further group of fluids or whether an extension has to rely on different
approaches in this case is not yet clear.

5. PROSPECTS

Based on the simultaneously optimized functional forms presented
above, state-of-the-art technical equations of state have been developed for
27 fluids. The results for non- and weakly polar fluids are summarized in
detail in Ref. 15, those for polar fluids in Ref. 16. Equations of state for
other fluids belonging to the same groups are being developed and will be
published in further articles of this series. However, up to now we have
mainly been replacing obsolete technical equations of state by more
accurate and more reliable equations—multiparameter equations of state
were available for all of the fluids discussed here. The brief discussion of
the status quo in Section 2 shows that this first step is certainly valuable in
itself, but the aim of this project is to proceed to fluids which have not been
described with multiparameter equations before. To do so implies a
number of challenges of both a theoretical and experimental nature.

Limitations of the functional forms proposed here have to be inves-
tigated in more detail. In Section 4.2 problems with regard to the represen-
tation of strongly associating fluids have been discussed. It has not yet been
investigated systematically whether restrictions apply for other groups of
substances like, e.g., aromatic compounds. Thus, it might become necessary
to develop simultaneously optimized functional forms for further groups of
substances where only restricted data sets are available. In this case, addi-
tional experimental work would be necessary to establish reference data
sets for selected fluids out of the corresponding groups, which can be used
in the simultaneous optimization process. Once a suitable functional form
is established, rather small data sets are sufficient to describe other fluids
out of the same group; see Section 5.1.

In this sense, small but reliable data sets of appropriate accuracy are
required to establish further equations of state based on the functional
forms presented in this article. Available pure component databases contain

34 Span and Wagner



data for a multitude of fluids. However, the accuracy of these data is ques-
tionable and difficult to assess in many cases. Undetected systematic errors
in the used data sets are likely to affect the performance of equations of
state based on existing databases. Algorithms which automatically detect
inconsistencies in data sets resulting from such systematic experimental
errors need to be developed. However, measurements with experimental
equipment optimized for the data needs of technical equations of state
could be the more favorable way to proceed if accuracy is essential.
Demands on data sets taken either from published sources or from these
measurements are discussed in the following section. In order to enable
other scientists to contribute to this project, software for fitting equations
of state based on simultaneously optimized functional forms to their own
data can be made available.

5.1. Requirements on the Data Sets

As mentioned above, two very different situations exist when discuss-
ing requirements on the data set which is necessary to establish a technical
equation of state by fitting the coefficients of a given simultaneously
optimized functional form.

When equations are based solely on data published in the scientific
literature, there is little chance to exercise any influence on the number of
available data, on the properties which have been measured, or on the dis-
tribution of the data. Surprisingly small data sets with a very unbalanced
distribution of the data proved to be sufficient to establish equations of
state which yield reliable results even far outside of the region where data
were available. However, this has to be verified in every single case.
Absolute plots of derived caloric properties (see Fig. 3) or plots of ideal
curves (see Figs. 9, 10, and 15 and Ref. 34) calculated from the resulting
equation are sensitive tools to detect unreasonable behavior. Equations
which were not fitted at least to vapor pressures and to data for thermal
properties at liquid states cannot be expected to describe the whole range of
fluid states. Critical parameters may be obtained from predictive algo-
rithms with sufficient accuracy; see Section 3.3.2. An equation for the heat
capacity of the ideal gas is required to describe caloric properties; for the
integration which is necessary to obtain ao(y, d), see Ref. 13.

In many cases, additional measurements will become necessary to
verify data from the literature, to supplement published data, or as the only
source of experimental information. At this point it becomes much more
important to discuss requirements on the available data sets. The assess-
ment summarized in the following paragraphs is based on experience
gained during the development of the equations of state presented in this
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article and in Refs. 15 and 16 and on investigations with systematically
reduced data sets; see for example Section 3.3.1.

For substances with simple molecular structure, the required informa-
tion on caloric properties of the ideal gas can usually be derived from
published spectroscopic data with sufficiently high accuracy. Where such
information is not available, where the molecular structure becomes too
complicated, or where features like hindered internal rotations make an
accurate theoretically founded prediction of ideal gas heat capacities diffi-
cult, gas phase speeds of sound measured with spherical resonators are the
most reliable source of information on caloric properties of the ideal gas.
In this case, such data are needed over a range of temperatures which is as
broad as possible, but 10–20 data points are usually sufficient, since the
temperature dependence of the ideal gas heat capacity is easy to fit.

At reduced temperatures below T/Tc % 0.9, information which con-
strains the second virial coefficients calculated from the equation of state is
sufficient to guarantee the required accuracy in the gas phase. This infor-
mation can also be obtained most easily from speed of sound measure-
ments with spherical resonators. Usually about three isotherms with five
data points each will be sufficient to enable an accurate representation of
gas phase properties. However, since the residual contribution to the speed
of sound is very small in the gas phase, the speeds of sound need to be
fitted to far less than the demanded uncertainty of |Dw|/w=1% to
guarantee a sufficiently accurate description of prT data. When the result-
ing equation does not represent gas phase speeds of sound clearly within
|Dw|/w < 0.1% for pressures below about 1 MPa the second acoustic virial
coefficient should be checked to ensure that it is represented within
|Dba |/ba [ % 2%. Larger deviations in ba and B are common at
T/Tc < % 0.7 where the plot of the second virial coefficients becomes very
steep.

For liquid and supercritical states, it is most advantageous to rely on
measured prT data. The data set does not need to be large—about 30–50
data points should be sufficient (results were discussed in Section 3.3.1
which were obtained with an even smaller data set), but the data should
cover a sufficiently broad range of states and they should be clearly more
accurate than the resulting equation needs to be. Significant systematic
errors in parts of the data set are likely to distort the prediction of derived
properties. To enable the resulting equation to fulfill the demands on
accuracy summarized in Table I, an experimental uncertainty of |Dr|/r [

0.05% should be aimed for at p [ 30 MPa; at p > 30 MPa uncertainties
of |Dr|/r [ 0.1%–0.2% can be regarded as sufficient.

Information on thermal properties at phase equilibrium is essential to
describe the phase equilibrium itself and to achieve a consistent description
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of caloric properties in the liquid phase. However, since the temperature
dependence of these properties is predicted rather accurately by equations
with a simultaneously optimized functional form, data sets with 5–10
accurate vapor pressures and saturated liquid densities should be sufficient.
If possible, the data should cover the range Tt [ T [ % 0.99Tc. A set of 3–5
data for the saturated vapor density is helpful mainly at temperatures in
the range % 0.9Tc [ T [ % 0.99Tc. At temperatures in the range % 0.99Tc <
T < Tc, vapor pressures can still be represented accurately, but the uncer-
tainty of calculated values for the saturated vapor and liquid density
increases due to fundamental restrictions of simple technical equations of
state. If such data are used in fits with high weights, they may affect the
representation of properties in other regions. At low reduced temperatures,
the relative uncertainty of results on the vapor pressure increases due to
experimental difficulties regarding the measurement of small pressures and
due to an increasing influence of impurities. If such data are overfitted,
they may distort the representation of other properties as well. When an
accurate description of vapor pressures at low reduced temperatures is
regarded as important, it may be useful to include some data for the
enthalpy of evaporation, Dhv, at these conditions.

Some data on derived caloric properties such as the isochoric heat
capacity or the speed of sound at liquid and liquid-like supercritical states
are helpful to verify a certain level of accuracy for these properties. But in
general, reasonable predictions can be expected if the equation was fitted to
a consistent set of thermal properties. Increased uncertainties may be
encountered at low reduced temperatures.

The requirements on data sets discussed above may seem excessive and
difficult to fulfill. However, problems result only from the broad range of
states and from the fact that different properties should be covered ideally.
The total number of data points which is needed to establish an equation
of state of the new class is on the order of 100 and can be measured rapidly
if suitable experimental equipment are available. Compared to other mul-
tiparameter equations of state which are usually based on hundreds or even
thousands of data points, this is a substantial advantage.
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